Sequences

Be Smart ACADEMY

Historical view

Mathematicians throughout history have been fascinated by patterns in nature and numbers. The famous Fibonacci sequence, for example, appears in everything from seashells to galaxies, revealing a fundamental order in the universe.

A sequence is an ordered list of numbers.

Unlike a set, the order of the numbers in a sequence matters, and the same number can appear multiple times.

Many sequences follow specific rule or formula that can be used to find any term in the sequence.

2 Definition

Each number is called "term".

We often use subscript notation to represent the terms.

Example:

- First term: a_1 or u_1 ...
- Second term: a_2 or $u_2 \dots$

•

• nth term: a_n or u_n...CADEMY

Arithmetic sequence

Imagine that you have a box and you will add each time two boxes.

The difference between two consecutive numbers is 2 $\mathbf{u_4} = 7$

So 2 is called the **common difference**

Arithmetic sequence

$$u_1 = 1$$
 $u_2 = u_1 + 2$
 $u_3 = u_2 + 2 = u_1 + 2 + 2 = u_1 + 2 \times 2$
 $u_4 = u_3 + 2 = u_1 + 2 \times 2 + 2 = u_1 + 3 \times 2$
 \cdot
 $u_3 = 5$

$$u_n = u_1 + (n-1) \times 2$$

$$u_2 = 3$$

$$u_1 = 1$$

Arithmetic sequence

General term: $u_n = u_1 + (n-1) \times d$

where d is the common difference

The general term is used to calculate any term of the sequence:

$$u_{10} = u_1 + (10 - 1) \times 2 = 19$$
 $u_3 = 5$

$$u_{101} = u_1 + (101 - 1) \times 2 = 201$$

$$u_2 = 3$$

$$u_1 = 1$$

Arithmetic sequence

Properties of Arithmetic sequence:

> How to prove that a sequence is arithmetic?

Show that the difference between any two consecutive general terms is constant: $u_n - u_{n-1}$ or $u_{n+1} - u_n$

 \succ What is the relation between any two terms u_p and u_q p < q?

$$u_{q} = u_{p} + (q - p) \times d$$

> What is the sum of the first nth terms?

$$S_n = u_1 + u_2 + u_3 + \dots + u_n$$

$$S_n = \frac{\text{number of terms}}{2} \text{(first term + nth term)} = \frac{n}{2} (u_1 + u_n)$$

If the sequence start by u_0 and the general term is u_n , the number of terms becomes n+1.

In general, the number of terms from one term to another is: The difference between the positions of the two terms + 1 i.e. the number of terms from u_p to u_q is: q - p + 1 From u_0 to u_n is n-0+1=n+1 terms

Application 1

You deposit \$1 000 in a bank account that earns simple interest at a rate of 5% per year. What will your account balance be after 14 years?

Each year, the amount of money in the bank increased 5% of 1 000\$, so this is an arithmetic sequence of common difference

$$d = \frac{5}{100} \times 1000 = 50$$
 and first term $u_0 = 1000$

The general term is $u_n = u_0 + (n - 0) \times d = 1000 + 50n$

After 14 years: n = 14; $u_{14} = 1000 + 50 \times 14 = 1700$ \$

ACADEMY

Geometric sequence

Imagine that you deposit in the bank \$1 000. Each year you earned 5% of your current balance.

Rank of the year	Balance in \$	
0	$u_0 = 1000$	
1	$u_1 = 1.05 \times 1000 = 1050$	$u_1 = 1.05u_0$
2	$u_2 = 1.05 \times 1050 = 1102.5$	$u_2 = (1.05)^2 u_0$
3	$u_3 = 1.05 \times 1102.5 = 1157.625$	$u_3 = (1.05)^3 u_0$
4	$u_4 = 1.05 \times 1157.625 = 1215.50625$	$u_4 = (1.05)^4 u_0$

Geometric sequence

General term: $u_n = u_0 \times r^n$

Where r is called the common ratio

The general term is used to calculate any term of the sequence:

$$u_{10} = u_0 \times r^{10} = 1000 \times 1.05^{10} = 1628.8946$$

 $u_{101} = u_0 \times r^{101} = 1000 \times 1.05^{101} = 138076.3207$

Geometric sequence

Properties of Geometric sequence:

➤ How to prove that a sequence is Geometric?

Show that the ratio between any two consecutive general terms is

constant:
$$\frac{u_n}{u_{n-1}} = r$$
 or $\frac{u_{n+1}}{u_n} = r$

 \succ What is the relation between any two terms u_p and u_q p < q?

$$u_q = u_p \times r^{q-p}$$

> What is the sum of the first nth terms?

$$S_{n} = u_{1} + u_{2} + u_{3} + \dots + u_{n}$$

$$S_{n} = \text{first term} \left(\frac{1 - r^{\text{number of terms}}}{1 - r} \right) = u_{1} \left(\frac{1 - r^{n}}{1 - r} \right)$$

Application 2

Consider the sequence (u_n) defined

by:
$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n}{1 - u_n} \end{cases}$$
 (assuming $u_n \neq 1$)

1. Show that (u_n) is not geometric nor arithmetic.

$$\begin{array}{l} u_0 = 3 \\ u_1 = \frac{u_0}{1 - u_0} = \frac{3}{1 - 3} = -\frac{3}{2} \\ u_2 = \frac{u_1}{1 - u_1} = \frac{-\frac{3}{2}}{1 + \frac{3}{2}} = \frac{-\frac{3}{2}}{\frac{5}{2}} = -\frac{3}{5} \\ u_1 - u_0 = -\frac{3}{2} - 3 = -\frac{9}{2} \\ u_2 - u_1 = -\frac{3}{5} + \frac{3}{2} = \frac{9}{10} \end{array} \right\} u_1 - u_0 \neq u_2 - u_1 \text{ so the sequence is not arithmetic.}$$

$$\begin{array}{l} \frac{u_1}{u_0} = -\frac{\frac{3}{2}}{3} = -\frac{9}{2} \\ \frac{u_1}{u_0} = -\frac{\frac{3}{2}}{\frac{3}{2}} = \frac{-2}{5} \end{array} \right\} \frac{u_1}{u_0} \neq \frac{u_2}{u_1} \text{ so the sequence is not geometric.}$$

Application 2

Consider the sequence (u_n) defined

by:
$$\begin{cases} u_0 = 3 \\ u_{n+1} = \frac{u_n}{1 - u_n} \end{cases}$$
 (assuming $u_n \neq 1$)

- 2. Consider the sequence (v_n) defined by $v_n = \frac{1}{u_n}$.
 - a. Show that (v_n) is an arithmetic sequence.
 - b. Determine its common difference and its first term.
 - c. Express v_n in terms of n.
 - d. Deduce u_n in terms of n.
 - e. Calculate $S_n = v_0 + v_1 + \cdots + v_n$

a.
$$v_{n+1} = \frac{1}{u_{n+1}} = \frac{1-u_n}{u_n}$$

$$v_{n+1} - v_n = \frac{1-u_n}{u_n} - \frac{1}{u_n} = \frac{-u_n}{u_n} = -1 \text{ constant}$$
So (v_n) is an arithmetic sequence.

b. Common difference is d=-1

First term is
$$v_0 = \frac{1}{u_0} = \frac{1}{3}$$

c.
$$v_n = v_0 + nd = \frac{1}{3} - n$$

d.
$$u_n = \frac{1}{v_n} = \frac{1}{\frac{1}{3} - n} = \frac{3}{1 - 3n}$$

e.
$$S_n = \frac{n+1}{2}(v_0 + v_n) = \frac{n+1}{2}(\frac{1}{3} + \frac{1}{3} - n) = \frac{n+1}{2}(\frac{2}{3} - n)$$

Application 3

Consider the sequence
$$(u_n)$$
 defined by:
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2}u_n + 3 \end{cases}$$

1. Show that (u_n) is not geometric nor arithmetic.

$$\begin{array}{c} u_0 = 2 \\ u_1 = \frac{u_0}{1 - u_0} = \frac{1}{2} u_0 + 3 = 4 \quad ; \quad u_2 = \frac{1}{2} u_1 + 3 = 5 \\ u_1 - u_0 = 4 - 2 = 2 \\ u_2 - u_1 = 5 - 4 = 1 \\ \end{array} \\ \begin{array}{c} u_1 - u_0 \neq u_2 - u_1 \text{ so the sequence is not arithmetic.} \\ \frac{u_1}{u_0} = \frac{4}{2} = 2 \\ \frac{u_2}{u_1} = -\frac{5}{4} \end{array} \\ \begin{array}{c} \frac{u_1}{u_0} \neq \frac{u_2}{u_1} \text{ so the sequence is not geometric.} \end{array}$$

Consider the sequence
$$(u_n)$$
 defined by:
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2}u_n + \frac{1}{2}u_n \end{cases}$$

- - a. Show that (v_n) is a geometric sequence.
 - b. Determine its common ratio and its first term.
 - c. Express v_n in terms of n.
 - d. Deduce u_n in terms of n.
 - e. Given $T_n = v_0 + v_1 + \dots + v_n$. Calculate T_n in terms $c. \ v_n = v_0 \times r^n = -1 \times \left(\frac{1}{2}\right)^n = -\frac{1}{2^n}$

Consider the sequence
$$(u_n)$$
 defined by:
$$\begin{cases} u_0 = 2 \\ u_{n+1} = \frac{1}{2}u_n + 3 \end{cases}$$
 a. $v_{n+1} = u_{n+1} - 6 = \frac{1}{2}u_n + 3 - 6 = \frac{1}{2}u_n - 3$
2. Consider the sequence (v_n) defined by $v_n = u_n - 6$.
$$\frac{v_{n+1}}{v_n} = \frac{\frac{1}{2}u_{n} - 3}{u_n - 6} = \frac{\frac{1}{2}(u_n - 6)}{u_n - 6} = \frac{1}{2} \text{ constant}$$

So the sequence is geometric.

So the sequence is geometric.

b. Common ratio
$$r = \frac{1}{2}$$

First term is $v_0 = \frac{1}{2}u_0 - 3 = -1$

c.
$$v_n = v_0 \times r^n = -1 \times \left(\frac{1}{2}\right)^n = -\frac{1}{2^n}$$

e.
$$T_n = v_0 \left(\frac{1 - r^{n+1}}{1 - r} \right) = -1 \times \left(\frac{1 - \frac{1}{2^{n+1}}}{1 - \frac{1}{2}} \right) = -2 \left(1 - \frac{1}{2^{n+1}} \right)$$

ARITHMETIC

<u>Geometric</u>

General form

Proof

Sum

$$S_n = u_1 + u_2 + \dots + u_n$$

$$u_n = u_1 + (n - 1)d$$

 $u_n = u_0 + nd$

$$u_{n+1} - u_n = d$$
 (constant)

$$S_n = \frac{n}{2}(u_1 + u_n)$$

$$u_n = u_1 \times r^{n-1}$$
$$u_n = u_0 \times r^n$$

$$\frac{u_{n+1}}{u_n} = r \text{ (constant)}$$

$$S_n = u_1 \times \left(\frac{1-r^n}{1-r}\right)$$

Remark: the number of terms from u_p to u_q is : q - p + 1

Variations of a sequence

General method:

Calculate $u_{n+1} - u_n$ (difference between two consecutive general terms)

- $u_{n+1} u_n > 0$: (u_n) is increasing strictly
- $u_{n+1} u_n < 0$: (u_n) is decreasing strictly
- $u_{n+1} u_n = 0$: (u_n) is constant

Example: consider the sequence $u_{n+1} = \frac{n+1}{2n}u_n$; $u_1 = \frac{1}{2}$

Suppose that $u_n > 0$ for all $n \ge 1$

$$u_{n+1} - u_n = \frac{n+1}{2n}u_n - u_n = \frac{-n+1}{2n}u_n$$

$$n \ge 1 \Longrightarrow 1 - n \le 0$$
 and $2n > 0$

$$u_n > 0$$
 (given) so $u_{n+1} - u_n < 0$ then the sequence is decreasing strictly.

Mathematical induction

It is a method to prove statements that cannot be demonstrated by a direct argument. This proving technique can be compared to the process of making dominoes fail.

Mathematical induction

Step 1: Show that the statement is true for the first value. Step 2:
Assume that the statement is true for some arbitrary integer k.

Step 3: Prove that it is true for k+1

Mathematical induction

Example: Consider the sequence
$$\begin{cases} u_0 = 1 \\ u_1 = 3 \\ u_{n+1} = 4u_n - 3u_{n-1} & \text{for } n \geq 1 \end{cases}.$$

Show that for all n>0 that $u_n = 3^n$

For n=0:
$$u_0 = 1 = 3^0$$

Suppose that the statement is true for n: $u_n = 3^n$

$$u_{n+1} = 4u_n - 3u_{n-1}$$

= $4 \times 3^n - 3 \times 3^{n-1}$
= $4 \times 3^n - 3^n$
= $3^n(4-1)$
= $3^n \times 3$
= 3^{n+1} so $u_n = 3^n$ for all n

Be Smart ACADEMY